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Abstract

Prescriptive process monitoring methods seek to control the execution of a
business process by triggering interventions, at runtime, to optimize one or more
performance measure(s) such as cycle time or defect rate. Examples of interven-
tions include, for example, using a premium shipping service to reduce cycle time
in an order-to-cash process, or offering better loan conditions to increase the ac-
ceptance rate in a loan origination process. Each of these interventions comes with
a cost. Thus, it is important to carefully select the set of cases to which an inter-
vention is applied. The paper proposes a prescriptive process monitoring method
that incorporates causal inference techniques to estimate the causal effect of trig-
gering an intervention on each ongoing case of a process. Based on this estimate,
the method triggers interventions according to a user-defined policy, taking into
account the net gain of the interventions. The method is evaluated on four real-life
data sets.

Keywords: business process, prescriptive process monitoring, causal inference,
heterogeneous treatment effect estimation

1 Introduction
Prescriptive process monitoring is a family of techniques that provides recommenda-
tions on which actions to take to improve a business process with respect to one or
more performance metric(s). Depending on the process, there may be several interven-
tions (a.k.a. treatments) that workers may perform to improve a certain performance
metric. For example, in an application-to-approval process, giving a call to a customer
to obtain missing information may speed up a case. However, such interventions come
at a cost. Therefore, the prescriptive process monitoring method needs to incorporate
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a decision procedure to determine which cases should be subjected to a given type of
intervention, taking into account the benefits and costs of these interventions.

In this setting, this paper tackles the following problem: Given an intervention that
in general improves a process performance metric of a case, which cases should we
trigger this intervention for to maximise the total net gain? Here, the total net gain is
the sum of the differences between the benefit of each intervention and its cost.

To tackle this problem, we propose a prescriptive monitoring method that triggers
interventions based on the continuous observation of the process. The method relies
on causal effect estimation models to estimate the effect of an intervention on a binary
or real-valued process performance metric (e.g., the cycle time or the positive outcome
rate). The estimated causal effect is then used to define a policy which maps a case
prefix to a treatment assignment. An intervention is triggered if the policy determines
that the case should receive it. The method incorporates an applicability testing proce-
dure to determine if the dataset used to train the causal effect estimation model meets
basic assumptions required for this purpose, as well as a procedure to determine which
method to use to train the causal effect estimation model. The method also incor-
porates an approach to assist users in selecting a treatment policy and understanding
which cases will be treated for a given policy (policy interpretation). The applicability
of the proposed method is evaluated using four real-life datasets.

This paper is an extended and revised version of a conference paper [5]. With re-
spect to the conference version, this article incorporates the following additional con-
tributions:

• The method presented in the conference paper focuses on interventions that re-
duce the cycle time of a case. In this article, we extend the scope of the method to
deal both with real-valued case outcomes (e.g., cycle time, cost) and with binary
case outcomes (positive vs. negative case outcome).

• We extend the method with steps to evaluate the applicability of causal effect es-
timation methods on the input dataset and the relative performance of alternative
causal effect estimation methods, prior to applying them to train a causal effect
estimation model and treatment policy.

• We interpret our causal estimation models and selected policies using established
methods from the explainable machine learning literature.

The next section motivates the approach via an example. Section 3 reviews related
work. Section 4 introduces preliminary concepts and notations. The proposed method
is described in Section 5, while the evaluation is discussed in Section 6. Section 7
draws conclusions and discusses future work directions.

2 Motivating Example
We consider a loan origination process that starts when a client submits a loan applica-
tion. The submitted documents are screened. If some documents are missing, a request
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for further information is sent to the customer either by email or phone. After the miss-
ing documents are received, the application is either approved or rejected. In either
case, the customer is notified.

Historical data shows that customers respond faster to phone calls than to emails.
Thus, one way of reducing the cycle time of the process is to call the customer about
the missing documents. However, handling missing document events via email is less
costly and takes less effort. Therefore, workers would ideally only call a customer if
this would speed up the process considerably. Commonly, a company would leave it
at the discretion of the employees to decide which customers get a phone call. This
might, however, lead to a suboptimal tradeoff between the costs and the cycle time.
Alternatively, one could try and define a policy for picking the cases that receive the
call, making use of the historical data.

One approach to determine which customers to call (and when) is by predicting the
remaining time of each case and triggering an intervention on those cases that are ex-
pected to be most delayed w.r.t. a cycle time target [34, 19, 18]. However, this approach
may be ineffective. Suppose that the reason why a case is likely to have a long cycle is
that the employee handling it is occupied with other cases. If so, making a phone call to
obtain the missing information (the intervention) would consume more resources with
little effect on cycle time. Since the phone call is an expensive intervention, we would
like to reserve it for cases that benefit from it the most. So, although the above case is
likely to have a long cycle time, the phone call should not be made.

A more suitable approach could be to estimate the causal effect of a phone call on
the cycle time for each individual case and to direct the interventions to cases with the
highest estimated effect. In the example above, the causal effect of a phone call on the
cycle time would be close to zero, since this intervention does not address the actual
bottleneck (the employee’s time). A policy informed by this estimate would correctly
suggest not making the phone call and therefore avoiding unnecessary costs. This paper
pursues the causal effect estimation approach for defining intervention policies.

3 Related Work

3.1 Prescriptive Process Monitoring
Various prescriptive process monitoring methods have been proposed. In [15], the
authors provide a comprehensive review of prescriptive monitoring methods. Teine-
maa et al. [34] propose to trigger an intervention when the probability of a case leading
to a negative outcome is above a threshold optimised w.r.t. a net gain function. This
method is later extended in [6] to optimise the timing of firing an alarm. The method
by Weinzierl et al. [37] uses predictive models to determine which activity, among
the most likely next activities in the case, is correlated with higher values of a given
KPI. Metzger et al. [18] use deep learning models to generate predictions about an
ongoing case and feed these predictions to an online reinforcement learning technique,
which triggers an intervention based on the predictions and their reliability. The above
methods tackle the problem of identifying which cases need an intervention, while our
approach aims to identify cases that can benefit most from a given intervention.
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This problem is addressed in the conference version of this paper, where we pro-
pose a prescriptive monitoring method based on a causal estimator named orthogonal
random forest (ORF) [22] to reduce the cycle time of the process. This work was
extended by Shoush and Dumas [29] to address resource constraints when triggering
interventions.

Resource allocation is another major focus in prescriptive monitoring. The work
by Wibisono et al. [38] makes recommendations about which police officer should
be assigned to the next task in a driving application process. Another work by Sind-
hgatta et al. [31], recommends resources to take up a task if they are predicted to
finish the task within the defined time frame. While our approach is not concerned
with allocating specific resources to specific tasks, it can be applied to the problem of
which type of resource is assigned to a case (e.g., if there is a dedicated "experienced
resource", our method can be used to identify which cases benefit the most from having
this resource assigned to them).

3.2 Causality in Process Mining
In recent years, both causal discovery and inference have been gaining increasing atten-
tion in process mining applications. Hompes et al. [10] propose an approach to discover
cause-effect relations between aggregate characteristics of a process (e.g. frequency of
activity) and process performance indicators (e.g. mean cycle time). Koorn et al. [14]
present a method to identify causal relations between a response and an effect. They use
statistical tests to discover action-response-effects, where the action defines a subgroup
of cases and the response is a treatment that enhances the probability of the effect.
Polyvyanyy et al. [24] present causality mining, a systematic approach to discovering
causal dependencies between events encoded in large datasets. Narendra et al. [20]
use structural causal models to confirm potential cause-effect relations identified by
analysts. Qafari et al. [25] use structural equation models to test for the existence of
a causal relation between an attribute and an outcome. They later expand the use of
SEMs in [26] for counterfactual explanation of case-level predictions. None of the
above studies quantifies the effect of a treatment at the level of an individual case.
Hence, they cannot be applied to prescriptive process monitoring, which is the focus of
this paper.

In our previous work [4], we use action rule mining to extract candidate treatments
correlated with a positive outcome. That work deals only with binary case outcomes,
whereas in this paper we deal with both binary (process outcome) and numerical (cycle
time) target variables. Furthermore, this work focuses on providing recommendations
in an operational setting, whereas in [4], the recommendations are in the form of
tactical rules.

3.3 Reinforcement Learning
Reinforcement learning (RL) is a learning paradigm to learn the effectiveness of an
agent’s actions through interactions with the environment [32]. An RL agent selects
an action a in response to an environment s and receives a reward r for that behaviour.
The goal of the agent is to maximise the reward. RL has been used for different tasks

4



in process mining. In [30], the authors build a business support system based on Q-
Learning. Another study by [12], uses RL for resource allocation. While these methods
have shown considerable success in using reinforcement learning for process mining,
they require online interactions with the environment and can suffer from the cold start
problem initially. Notably, RL-based methods have an advantage in dealing with non-
stationarity in the data [18] and time-varying attributes. In our approach, the focus is
on finding the best cases to receive the treatment. Hence, dealing with time-varying
attributes is not as significant an issue as when the goal is finding the best time to treat,
which is the problem addressed in [18]. Therefore, we chose causal effect modelling
over RL as the backbone of our approach to take advantage of the information in the
event log rather than through interactions with a live environment.

4 Preliminaries and Definitions
This section provides the background knowledge required to understand the subsequent
discussions. It includes definitions from process mining and causal inference fields,
focusing on the estimation of causal effects.

4.1 Event Logs and Traces
We refer to an instance of a process execution as a case. A case consists of a collection
of events, where an event represents an execution of an activity. Each event has three
attributes: a case identifier specifying which case the event belongs to, an activity that
triggered the event, and a timestamp specifying when the event occurred. An event
may also have further attributes, such as a resource that carried out the activity or an
event type.

Definition 1 (Event, Trace, Event Log)
An event is a tuple (a,c, t,(d1,v1), . . . ,(dm,vm)), m ∈ N0, where a is an activity name
(label), c is a case identifier, t is a timestamp, and (d1,v1), . . . ,(dm,vm) are attribute-
value pairs. A trace is a finite sequence σ = ⟨e1, . . . ,en⟩, n ∈ N0, of events with the
same case identifier in ascending order of their timestamps. An event log, or log, is a
multiset of traces.

As we aim to estimate the causal effect of an intervention on the target of interest, we
are interested in events that occurred before the intervention. We use the notion of a
k-prefix to capture such preceding events.

Definition 2 (k-Prefix)
A k-prefix of a trace ⟨e1, . . . ,en⟩, n ∈ N0, is a sequence ⟨e1, . . . ,ek⟩, 0 ≤ k ≤ n.

In this paper, we train a number of machine learning models that take as input a
fixed number of independent variables (herein called features). Therefore, the traces in
the event log must be encoded as feature vectors.
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Definition 3 (Sequence encoder)
A sequence encoder f : S∗ → X1 ×·· ·×Xp is a function that takes a (partial) trace σ

and the event log L ⊆ S∗ that σ belongs to and transforms σ to a feature vector X in
the p-dimensional vector space X1 ×·· ·×Xp with S∗ being the universe of all possible
traces over a set of events S and Xi ⊆ F, where F is a set of all possible features and
Xi ∩X j = /0, i, j ∈ [1 .. p] and i ̸= j.

4.2 Causal Identification
The field of causal inference is concerned with determining the independent effect
of a phenomenon on an outcome of interest. Two causal inference frameworks are
discussed in the literature. In the causal graphical models framework [23], a causal
graph is constructed by a domain expert. Given a causal graph, it is possible to ascertain
whether a causal estimand is identifiable and if so, it can be estimated using automated
methods. While this framework focuses on identifying causal effects, the Neyman-
Rubin potential outcomes framework [27] focuses on the estimation of causal effects
of interventions. Hence, in this paper, we use the Neyman-Rubin potential outcomes
framework.

An intervention, or treatment, can be captured by a binary variable T ∈ {0,1},
where T = 1 indicates that the treatment is applied and T = 0 that it is not. Each case
in a log has two potential outcomes: the outcome that would have happened if the treat-
ment was applied (Y 1) and the outcome that would have happened under no treatment
(Y 0). Then, the conditional average treatment effect (CATE) of a case is defined as the
difference between the potential outcomes conditioned on a set of features describing
the current state of a case:

Definition 4 (Conditional Average Treatment Effect)
Let X be a set of attributes that characterize a case. Then, the conditional average
treatment effect (CATE) of the case is defined as follows:

CATE : θ(x) = E[Y 1 −Y 0 |X = x],

where E denotes the expected value of Y 1 −Y 0 and X is a feature vector of random
variables derived from case prefixes as in definition 3. The details of the included
features in X are explained in Section 5.1.

CATE is a causal estimand, meaning that in order to estimate it, we need to have
access to both Y 0 and Y 1. Note that Y 1 and Y 0 are hypothetical quantities, not observed
ones. This means that in real life, it is impossible to follow both potential realities (i.e.,
we cannot both apply a treatment to a case and not apply it). This is known as the
“fundamental problem of causal inference” [9]. Thus, to estimate the causal estimand,
we express it via statistical estimands, such as E[Y |T =1,X ] and E[Y |T =0,X ], which
can be estimated from data. According to the potential outcomes framework, CATE can
be expressed via statistical estimands only if the ignorability, positivity, consistency,
and no interference conditions hold.

The ignorability (a.k.a. exchangeability) condition means that given the pre-
treatment attributes X , treatment assignment is independent of the potential outcomes.
In other words, after conditioning on X , the treatment assignment should be as good as
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random, which ensures that the treated and not treated groups are exchangeable, that
is:

Y 1,Y 0 ⊥⊥ T |X .

The positivity condition means that for every set of values for X , treatment assignment
is not deterministic. So, every subgroup of interest has some chance of getting either
treatment:

P(T = t |X = x)> 0, for all t and for all x.

The consistency condition states that the potential outcome under treatment T = t is
equal to the observed outcome if the actual treatment received is T = t:

Y = Y t if T = t for all t.

According to no interference, the potential outcomes of one subject are not affected by
the treatments received by others.

The positivity condition can be partially assessed from data, for example by mod-
elling the propensity score. The propensity score tells us the probability of a case
receiving the treatment. It can be modelled using any off-the-shelf probabilistic model.
If the propensity score for all cases is high, we can verify that the positivity condi-
tion holds. However, if the propensity score for some cases is low, we cannot make a
definite conclusion about the positivity condition. Thus, we need additional analysis
to ensure the estimation step can deal with the violation of positivity. The consistency
conditions can be verified by ensuring that there are no multiple definitions of the treat-
ment under study, for example by domain expertise. For example, if the definition of
the treatment is ”skip an activity”, this definition leads to a violation of the consistency
assumption. Because some cases might receive the treatment ”skip activity a”, but
another case might receive the treatment ”skip activity b”. These two treatments are
different, but in our definition ”skip an activity” are considered the same. This why
a domain expert needs to ensure that the definition of treatment should refer to one
specific activity and does not contain variations.

Verification of the ignorability condition is not straightforward. In observational
data, such as event logs, there often exist variables that influence both the treatment as-
signment and the outcome. The existence of these confounding variables (or controls)
creates a non-causal association between T and Y , which can invalidate the study. The
best way to circumvent this problem is to conduct a randomized experiment (A/B test).
As we are working with event logs, where randomization of the treatment is not en-
sured, we assume that ignorability holds to estimate CATE. Under this assumption, the
observed variables X contain sufficient information needed to adjust for confounding.
The adjustment can then be carried out during the estimation step. Making this as-
sumption is commonplace in methods using the potential outcomes framework [13].
However, it is reasonable to believe that there are confounders outside of X . There-
fore, in this paper, we implement a check to see how our method behaves when this
assumption is violated.

In many real-life use cases, including business processes, the no interference condi-
tion can often be violated as well. For instance, skipping an activity in one case might
leave the process worker available to perform activities in another case, and vice versa.
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As a result, the potential outcomes of the second instance are affected by the treatment
applied in the first. However, due to the work by [3, 36], who show that it is possible
to make causal claims under interference, it is common to assume that a violation of
the no interference condition often has only a small influence on the causal effect esti-
mates. However, the severity of the violation of no interference depends on the chosen
treatment and the outcome and care must be taken if domain experts believe that the
level of interference is high.

4.3 Heterogeneity in Causal Effects
In causal estimation, the goal is to estimate two main quantities [8]: the average treat-
ment effect (ATE) and the conditional average treatment effect (CATE). The average
treatment effect provides an overall view of the treatment’s impact on the outcome. For
example, we might want to know what is the overall effect of decreasing interest rates
on customers accepting loans. In this example, we are not interested in effect of this
treatment on individual customers, rather, we are looking for an overall quantity that
describes the effectiveness of the treatment.

In other studies, we might be interested in a more granular form of treatment effect.
For example, instead of investigating the overall effect of increasing interest rates, we
might be interested in knowing which types of customers are more impacted by the
interest rate and would accept a loan because of the lower interest. In a study such as
this, we assume that customers respond differently to a given treatment and we would
like to estimate an individual quantity for each customer. In other words, we assume
there is heterogeneity in the treatment effect.

4.4 Causal Estimation
Next to identification, the other core problem in causal inference is estimating

CATE from observational data. A large body of works from recent years focus on using
machine learning methods for CATE estimation. We henceforth refer to this method
as causal estimators. Notably, a family of methods known as meta learners [16] com-
bine supervised learning or regression methods as base learners. This gives them the
flexibility to employ any method that fits particular data types. Here we provide a brief
description of the meta-learners we use in this paper.

4.4.1 S-Learner

The S-learner, uses a single model µ to estimate the observed outcome with the treat-
ment indicator being included as an ordinary feature:

µ(x, t) = E[Y |X = x,T = t].

Any supervised machine learning or regression method can be used to estimate
µ from the entire dataset. This model is then used to estimate the outcome under
treatment and under no treatment:

µ̂(x,1) = E[Y |X = x,T = 1],
µ̂(x,0) = E[Y |X = x,T = 0].
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The treatment effect is calculated by getting the difference between our estimates
of the potential outcomes:

θ(x) = µ̂(x,1)− µ̂(x,0).

4.4.2 X-Learner

The X-learner is another meta learner that is designed to work well with imbalanced
treatment groups. This method has three main stages:
1. Use any supervised learning or regression method to get estimates of the potential
outcome. Note that instead of including the treatment indicator as a feature as in the
S-learner, two separate models are trained for estimating µ under treatment and no
treatment:

µ1(x) = E[Y (1)|X = x],
µ0(x) = E[Y (0)|X = x].

2. Use ˆµ0(x) to impute the treatment effect for the treated cases, and ˆµ1(x) for the
control (not treated) cases:

D1,i(x) = Yi(1)− µ̂0(xi),
D0,i(x) = µ̂1(xi)−Yi(0).

We call the quantities above the imputed treatment effects. Next, using the imputed
treatment effects as the response variable (what we are trying to estimate), we train
two models using any supervised machine learning or regression method, one for the
treated cases and another for the control cases:

θ1(x) = E[D(1)|X = x],
θ0(x) = E[D(0)|X = x].

3. In the third stage, the CATE estimate is calculated as the weighted average of the
two estimates in stage two:

θ̂(x) = g(x)θ̂0(x)+(1−g(x))θ̂1(x),

where g(x) is a weight function. In the paper proposing X-learner, the propensity scores
are used as weights.

4.4.3 Causal Forest

Another popular method is the work by Athey et al. [2]. which is a flexible non-
parametric estimation method based on generalized random forests. To understand this
method, we need to understand the base learners of causal forests, namely causal trees.
Causal trees work very similarly to regression trees. They divide the feature space X
recursively into a deep partition Π using a greedy algorithm. In a regular regression
tree, the splits are selected to minimise the mean squared error (MSE) of the outcomes.
But in a causal tree, they are selected to minimise our estimate of the expected mean
squared error (EMSE) of the treatment effect. Another splitting criterion in causal trees
is that all nodes after the split should contain both treated and control samples. Pruning
the partitions is done using cross-validation similar to regression trees. The treatment
effect of each partition Π is estimated using the samples in that partition:
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θ̂(Π) = E[Y (1,Π)−Y (0,Π)].

One important difference between Causal trees and regular regression trees is hon-
est splitting. Honest splitting means that the data is divided into two sets: one for
tree-building and one for estimation of the treatment effects. This ensures that the
tree’s estimates are unbiased within a particular sub-group [35].

Causal forest are constructed by averaging the results of many honest causal trees.
In the original Causal Forest method, the trees are constructed by sub-sampling the
data instead of bagging, which is more commonly used in regression trees.

4.5 Evaluating Causal Estimation Models
As mentioned before, real-world data sets such as event logs do not have the ground
truth CATEs due to the fundamental problems of causal inference. This means that
causal estimators cannot be evaluated by methods like train-test split or cross validation
like predictive models. So, it is common practice in the causal inference literature to
evaluate causal estimators with simulated data [1]. Here, we give a brief overview of
different ways data can be simulated for evaluating causal models.

The simplest and most common way is to create fully synthetic data from a set
of known confounders. This will give us access to the true treatment selection and
outcome mechanisms, that can be used for computing propensity scores and true causal
effects. The main disadvantage of this approach is that the results from fully synthetic
data might not generalize to real data.

An improvement over the previous approach is to use semi-synthetic data where
the features come from real data, but the treatment selection and outcome come from
arbitrary stochastic functions [21]. The main advantage of this approach is that the
treatment selection and outcome functions can be designed to have varying proper-
ties while keeping the feature set realistic. However, this approach still suffers from
unrealistic treatment and outcome mechanisms.

The problem of unrealistic selection and outcome mechanisms can be addressed by
fitting them to real data. In this approach, we assume the pre-treatment features X are a
complete set of confounders. Then, we fit a generative model to model treatment selec-
tion and outcome that closely match the real mechanisms P(T |X) and P(Y |T,X). We
can then sample from this generative model to simulate the outcome under treatment
and no-treatment conditions, which will provide us data with the ground truth CATE
while being statistically indistinguishable from the real data. Since our aim is to assess
causal estimators under realistic conditions, we use this approach in this paper.

4.6 Realcause
Realcause is a method to generate synthetic data that is fit to real data [21]. This
approach involves training models for treatment selection P(T |X) and the outcome
mechanism P(Y |T,X). In Realcause, neural networks, specifically multi-layer percep-
trons, are used to model these two mechanisms. For treatment selection, the input of
the neural network is X and the output of the network is the probability of receiving
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the treatment. For the outcome, the structure of the neural network follows the one
proposed in TARNet [28].

First, all of the data regardless of what treatment group they belong to are used as
input of the neural network to get a treatment agnostic representation of the data. The
network then branches off into two sections, one for the treatment group and one for the
control. These two sections are represented by two additional neural networks. Both
take the treatment agnostic representation of the data as input, but one network only
uses the data from the treatment group and the other the data from the control group.
In Realcause, all three networks use the same architecture for simplicity. The output of
this network is used to parameterise the distribution of the data. For binary variables,
such as treatment or binary outcomes, the distribution is assumed as the Bernoulli
distribution. The logistic sigmoid activation function is applied to the last layer of the
networks to parameterise the mean parameter for Bernoulli. For real-valued variables,
the output of the network is fed into a generative model called Sigmoidal Flow [11] to
derive a more flexible distribution specific to the data. These distributions are sampled
under both treatment and control conditions to get data with two potential outcomes
Y (1) and Y (0).

5 Prescriptive Monitoring Approach
We aim to design a recommender system that seeks to optimise a goal in a cost-aware
manner. This goal can be binary (e.g., process outcome) or continuous (e.g., cycle
time). At the core of our system is a causal estimation module that estimates the effect
of a given treatment on a target metric. In this method, we assume that the treatments
are binary. For instance, suppose that in the loan origination process discussed in
Section 2, the default way of handling missing documents is by sending emails to
clients to request additional documents, while some customers get phone calls instead.
In this scenario, the binary treatment options are sending emails (T = 0) or making
phone calls (T = 1). We refer to cases that got a phone call as the treatment group
and the cases that got an email as the control group. Making a phone call should, in
general, speed up the process. However, it is not feasible to call every client because
of the associated additional costs. Thus, we want to find the best policy for deciding
which clients should get phone calls.

Our approach consists of four phases, as depicted in Fig. 1. In the first phase,
data pre-processing, case prefixes are extracted from the log and encoded into feature
vectors. Next, in the applicability test and method selection phase, the feasibility of
using a causal estimator is assessed by simulating realistic artificial data that has the
same data generating distribution as the real event log. The causal model is first trained
and evaluated on the artificial data. If the results of the applicability test suggests that
there is benefit in applying a causal estimator, the best causal estimator is selected and it
is trained on the real event log. The applicability test and method selection phase is one
of the main contributions of this paper. While methods for assessing the performance of
causal estimators exist in the causal inference literature, our checks have been designed
specifically for the prescriptive monitoring task and with process improvement as the
goal. In the third phase, training and model selection, the chosen causal estimator is
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Figure 1: Overview of the proposed approach

trained on the real event log and the best treatment policy is selected. This policy is
used to define a threshold for treatment decision. In the online treatment phase, the
causal estimator and the selected policy are used to recommend whether to treat or
not to treat an ongoing case based on its estimated treatment effect and the selected
treatment policy.

Next, we describe the steps of the approach, namely data pre-processing, appli-
cability test & method selection, training and policy selection, followed by the online
treatment.

5.1 Data Pre-processing
This section elaborates on preparing the input data for training the causal model. To
this end, we extract k-prefixes from the event log and encode their associated data to
capture the heterogeneity of the treatment effects and the potential confounders.

5.1.1 Data Cleaning

In the offline phases of the approach, we train models based on completed historical
cases. First, we pre-process the log to remove incomplete cases. We then repair missing
attribute values. For a numeric attribute, we set missing values to the median value of
that attribute. For a categorical attribute, we set missing values to the most observed
value for that attribute (the mode). We also exclude cases that appear to have incorrect
timestamps.
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5.1.2 k-Prefix Extraction

The time when the treatment occurs in a case might be determined by a number of
factors specific to a given process. It may be that, for example, a call to a customer
would only be effective towards the end of the case, once a customer has had time to
think about the initial loan offer. Accordingly, we select prefixes for training in a way
that reflects the time points the treatments are observed in the data, as follows. First,
for each case that was treated in the training set, we select the prefix ending at the event
where the treatment occurred. For instance, given a trace σ = ⟨e1, . . . ,en⟩, suppose that
ek+1 indicates the treatment event where k+ 1 ≤ n. In this case, the selected prefix is
⟨e1, . . . ,ek⟩. Thus, k can be different for different cases.

For cases where no treatment occurs, we replicate the same distribution of prefix
lengths as that of cases that were treated. To do so, we construct the histogram of
distributions of prefix lengths where a treatment occurred (using the cases where the
treatment did occur). We then scale this histogram in such a way that its total mass
is equal to the number of cases where a treatment did not occur. Finally, we use the
scaled histogram to select the prefix lengths for the untreated cases. For example, let’s
consider the example where 15 cases in the training set were treated at prefix length 3,
20 cases at prefix length 4, and 10 case at prefix length 5. This leads us to a histogram
[(3,15), (4, 20), (5,10)]. We then randomly draw from this histogram. The reason we
select the prefix lengths in this way is that we can be confident that the treatment can
happen at these points in the process, since we can observe them in the log. Also, we
ensure that there is a balance in the amount of information present in both treatment
and control groups. If it happens that a case is shorter than the prefix length we need to
extract from it, then we do retain the full case instead of extracting a prefix of it.

5.1.3 Prefix Encoding

To apply the machine learning method for estimating treatment effects, we need to en-
code trace prefixes (ongoing cases) as fixed-sized feature vectors. Encoding static case
attributes is straightforward since their values do not change during the execution of a
case. However, traces often contain dynamic event attributes whose values change as
the case unfolds. Various methods have been proposed to encode dynamic attributes,
including aggregation encoding, last-state encoding, and index-based encoding. Ac-
cording to the results in the survey by Teinemaa et al [33], index-based encoding does
not lead to higher performance, and aggregation encoding generally yields the best
classifiers. So, we use aggregation encoding for the activity type and resource attributes
and other event attributes. Hence, the feature vector constructed from a k-prefix con-
tains numeric features for each activity type, resource, or event attribute A, the number
of times A appears in the k-prefix. If the attribute is numeric, we use the mean as our
aggregation function as we have found it to be the best performing. We use last-state
encoding for temporal features. This is because some of the temporal features we use
are inherently aggregates (e.g., time since case start) as will be explained in the next
section. So, they do not need to be aggregated again.

If an encoded case attribute is a categorical attribute, we apply one-hot encoding
to represent it as a numeric feature vector – a common practice when using machine
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learning models.

5.1.4 Feature Extraction

The two essential features needed for our method are the treatment and outcome. We
start by flagging the cases that include an activity indicative of the treatment. Then we
create a binary feature vector where the flagged cases get the value of one and other
cases get the value of zero. If the target of improvement is cycle time, we create the
target vector by taking the difference between the timestamp of the last event and the
timestamp of the first event. If the target is the case outcome, we either look for a
single feature that already represents the outcome or we look for an activity or a group
of activities that indicate the success or failure of a case. In this case, the target feature
can be engineered based on this information.

Given that we seek to estimate treatment effects on process outcome or cycle time,
we include temporal information in the feature vectors. Specifically, we include the
month, weekday, and hour of the timestamp of the last event in the prefix, the time
between the first and the last event in the prefix, and the time between the last two
events in the prefix (i.e. the inactivity period prior to the most recent event).

We also include the number of active cases as a feature to act as a proxy for the
current workload in the process. We do so because workload is a potential confounder,
influencing both the estimation target and the treatments (during high workloads, the
treatment might not be applied as often as usual and also, cases may be delayed or result
in a negative outcome due to customer dissatisfaction more often, creating a spurious
correlation between the treatment and the outcome). Finally, we encode the difference
between the first event in the prefix (the start time of the case) and the first event in the
log (the start time of the log’s timeframe) since the process might behave differently at
different points in time; hence, this feature can be a confounder.

5.2 Applicability Test and Method Selection
Before applying the causal estimator to the real-life dataset, its performance should
be assessed. Due to the fundamental problem of causal inference, we do not observe
the ground truth causal effect in the real-life event log. Recent advances in generative
machine learning allow us to learn a highly accurate distribution of the data generating
process. We can treat this empirical distribution as the true data generating distribution
and generate data under both control and treatment conditions, yielding two outcomes
under each condition. We can then calculate the treatment effect by simply taking the
difference between the two generated outcomes. The result of this step is that we will
have a data set that is statistically indistinguishable from the real data, but with the
added benefit of having access to the treatment effects. Using the artificial data, we can
answer the following question: How good is the estimator θ̂ when the data generating
distribution is F, where F is any arbitrary distribution? We can use the artificially
generated data to answer questions about the causal estimator we plan to use.

Therefore, using generative machine learning models, we generate an artificial log
that is similar to the real-life one, but contains both potential outcomes. To do this, we
use Realcause [21], a method for generating data that is both realistic and contains the
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ground truth causal effect. The advantage of using Realcause over other data simulation
methods is we can generate artificial data that is statistically indistinguishable from our
real-life event log, and also, change some of the characteristics of the data generating
process using tunable knobs. Specifically, we can use the positivity/overlap knob to
test the robustness of our model to the violation of the positivity assumption.

We start by fitting the Realcause method to the pre-processed event log. We then
create an artificial log by sampling from this generative flow model. In the next step,
we train the chosen causal model on the artificial log.

Once we have the artificial log, we use it to train one or several causal estimators.
Since there is no causal estimator that outperforms the rest on all datasets [40], we use
this step to select the best causal estimation method for each event log.

Since we have the ground truth in the artificial dataset, we can compute metrics
such as the mean squared error (MSE) or the mean absolute percentage error (MAPE).
But, these metrics are not suited for computing the net gain from applying the model.
This is because MSE and MAPE capture the deviation of the estimated treatment ef-
fect from the ground truth treatment effect. This does not directly provide us with any
useful insights about how good our decisions are and how much we gain from a treat-
ment policy. Therefore, we use the Qini metric which is easier to visualize and can
be adjusted to evaluate treatment policies as we will discuss later in this section. Tra-
ditionally, Qini curves and the closely related uplift curves provide a way to evaluate
causal estimators when the ground truth treatment effect is not available, which is the
case in all real-world datasets [40]. However, since we do have the ground-truth in this
phase of our approach, we use a modified version of the Qini curve presented below.

First, let us introduce the necessary notations. Coming back to the example of the
loan origination process, let us suppose that we used a causal estimator θ̂ and for ev-
ery customer represented by k-prefixes σi (with the treatment decision happening at
the k-th event), we have an estimated treatment effect for each customer. Let π be the
ascending ordering of the customers according to their estimated treatment effect, i.e.,
θ̂ π(σi) ≤ θ̂ π(σ j),∀ i < j, if the target is cycle time reduction. For outcome improve-
ment, π denotes the descending ordering of the traces, i.e., θ̂ π(σi) ≥ θ̂ π(σ j),∀ i < j.
In addition, π(n) is used to denote the first n percent of traces from the ordering. In
other words, π(n) denotes the customers whose treatment effect is in the top n percent
of the ordering.

Furthermore, let RY (1)
π(n) and RY (0)

π(n) be, respectively, the sums of the potential outcomes
of cases in under treatment and control conditions in π(n):

RY (1)
π(n) = ∑

|π(n)|
k=1 Yk(1),

RY (0)
π(n) = ∑

|π(n)|
k=1 Yk(0),

where |π(n)| is the number of cases in π(n).
We now define the Qini curve for cycle time reduction as:

Qini(n) = RY (0)
π(n)−RY (1)

π(n).

For outcome improvement, the Qini curve is defined as:
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Qini(n) = RY (1)
π(n)−RY (0)

π(n).

Qini(n) is the expected total improvement in the target variable (reduction of cycle
time or the number of positive outcomes), given that the top n percent of cases selected
by the causal model are treated (e.g. we make phone calls to the top n percent of cases).
The Qini curve can be plotted by computing Qini(n) for different values of n.

5.2.1 Heterogeneity Check

Having the artificial version of our event log, we would like to assess the applicability
of causal modelling. We perform various types of analysis using the Qini curve, to
assess whether or not the event log contains enough signal to perform causal analysis.
We start by plotting the Qini curve for various causal estimation methods. These can be
tree or forest-based methods, meta-learners, or doubly robust methods. In this paper,
we report the results for X-Learner, S-Learner, and Causal Forest as we have found
them to be the highest performing. We can assess the performance of these methods
by comparing their area under the Qini curves. We only proceed to the next steps if
the event log contains enough signal about causal effect heterogeneity. This is because
the main assumption that we make for our prescriptive monitoring method to provide
gain is that the treatment has varying causal effects on the target variable across dif-
ferent cases. If this variation is not observed, we terminate the prescriptive monitoring
procedure.

5.2.2 Positivity Violation Check

The next step of the analysis is to determine the robustness of the selected methods
to violations of the positivity assumption. Because event logs are observational data,
this assumption, along with ignorability, are the most likely to be violated. For exam-
ple, in our loan origination process, let us suppose that the phone call is only made
to customers with very high credit scores. In this case, the treatment assignment is
deterministic and the positivity assumption is violated. With this check, we would like
to see how the causal estimator behaves when this violation occurs. To perform this
check, we use the Positivity/Overlap knob in Realcause. This knob can take any value
β between 0 and 1, with β = 0 corresponding to a setting where treatment assignment
is fully deterministic, and β = 1 corresponding the treatment assignment observed in
the real data. All other values 0 < β < 1 correspond to somewhere in between. We
plot the Qini curves for different values of β to see how each method responds to the
violation of the positivity assumption. A method which is robust to the violation of
positivity will maintain high area under the Qini curve with low values of β .

5.2.3 Ignorability Violation Check

Next, we assess sensitivity of the selected methods to the violation of the ignorability
assumption. Recall that the existing causal estimation methods work under the assump-
tion of no unobserved confounding. This means that for these methods to work well,
we must assume that the observed features are sufficient to adjust for treatment selec-
tion bias. However, in practice, it is possible that there are confounding features which
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influence both treatment and outcome, and are not captured by the available data. To
simulate such a condition, we train the Realcause model to use all the available features
in the event log, but we exclude a set of features C when training the causal estimator.
Recall that Realcause models P(T |X) and P(Y |T,X). So, if we generate the artificial
log using the complete feature set X , all features in X will participate in modelling the
treatment selection and the potential outcomes. But if we have a feature set C such that
C ⊂ X and we train the causal estimator using X −C, then C will be a set of unobserved
confounding features because C participated in the data generating process, but was not
adjusted for in the causal estimation step. We then proceed to plot the Qini curves.

To choose C, we categorise the features into three main groups: case features,
resource features, and temporal features. For each causal estimator, we train three
additional models, each time excluding one group of features. To assess the robustness
of each causal estimator to unobserved confounding, we compare four models. The
first is made when the estimator is trained with all the features (C = /0). Let us call it
model M1. The second model is trained with C=case features (model M2), the third
when C=resource features (model M3), and the fourth for when C=temporal features
(model M4). If we see a significant drop in the area under the qini curve of either M2,
M3, or M4 compared to M1, then we conclude the causal estimator is sensitive to the
violation of the ignorability assumption, and great care must be taken to ensure that all
confounding features are present in the real-life event log.

Finally, we select the model that performs well in terms of area under the Qini
curve, and is robust to the violation of both positivity and ignorability conditions to be
used in the policy selection phase on the real-life event log.

5.3 Training and Policy Selection
5.3.1 Training

This step of the offline phase takes as input the encoded k-prefixes and learns a function
that, given a k-prefix ⟨x(1),x(2), . . . ,x(k)⟩, returns a point estimate of the treatment effect
θ . The best causal estimator is selected based on the results of the Applicability Test
and Method Selection step.

The causal estimator requires four inputs: the target variable Y , the treatment in-
dicator T , features capturing heterogeneity X , and the confounding variables W . Y
is a vector containing the process performance indicator we are trying to optimise,
for example, cycle time or outcome. We assume that a binary treatment is previously
identified, which is hypothesised to increase the performance. In the loan origination
example in Section 2, this is a phone call.

As the proposed approach can be applied at operational level, we would like to
know the treatment effect when it is time for the process worker to decide whether
to treat a case or not. Therefore, effect heterogeneity is captured via static case-level
attributes and all event attributes (including the activity name and the resource), and the
inter-case features available at the decision time. This means that X is a feature vector
that captures all of this information about the k-prefix after the suitable encodings have
been applied, as described in Section 5.1. In this study, we assume that all of the
available features derived from the event log are also potential confounders, meaning
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that all the features present in X are included in W . However, in general, X and W do
not need to be the same. A domain expert can remove some features from W if they
believe these features do not influence the treatment decision or outcome.

Armed with these definitions of Y , T , X , and W , the next step is to train the estima-
tor. The input data is temporally split into the train and test sets. A separate test set is
required for the evaluation of the trained model, and for selecting the best policy.

If the selected model is not readily explainable (such as meta-learners or forest-
based methods), Shapley values can be used with causal models. Similar to predictive
models, SHAP [17] can explain the heterogeneity of the estimated effects, that is, what
features lead the model to produce higher or smaller effects for different subgroups of
cases. In other words, it tells which features were the most important in determining
treatment effect heterogeneity. If we think of different features as players contributing
to the treatment effect estimation, SHAP provides scores for each player’s contribution.
Our approach is similar to the work by Galanti et al [7]. They use SHAP to provide
explanations in a predictive monitoring setting, so, they compute Shapley values for
each prefix σk, for all k ≤ n where n is the length of the entire trace. In this paper,
however, we only compute the Shapley values for one prefix. Recall that in Section
5.1.2, we select one prefix length k where k is the number of events that occur before
the treatment decision time. Using the methods proposed in Sections 5.1.3 and 5.1.4,
we obtain the feature vector X = [x1, . . .xn] where xi can either denote a case attributes,
or an encoded event attributes, or an engineered feature (e.g., inter-case or temporal
features). Unlike in the work by Galanti et al, the feature set in X is fixed and does
not vary from prefix to prefix. This is because the way they construct feature vectors
is by appending the features of each event in the prefix. In contrast, we use the same
combination of aggregation and last state encoding as described in Section 5.1.3, which
results in the same features for all cases.

We use SHAP explanations in an offline manner, meaning that we seek to explain
which features are important to the trained model when making its causal effect es-
timation. We compute Shapley values for each feature in X using the methodology
described in [17] and display the features with the highest Shapley values using a
beeswarm plot. We chose the beeswarm plot because it can display the most important
features and their distribution of Shapley values based on their feature value. For exam-
ple, Figure 11a shows a list of the most important features. Each dot in the beeswarm
plot corresponds to one data point (one prefix, encoded as a feature vector). The color
of each data point denotes the value of that feature, with red denoting high values and
blue denoting low values. The x-axis shows the Shapley values. Positive or negative
Shapley values indicate whether that feature contributed to increasing or decreasing the
treatment effect, respectively. Using the beeswarm plot, we can visualise how values
of important features affect the estimation of treatment effects.

5.3.2 Policy Selection

Oftentimes, applying treatments to cases comes at a cost. Making phone calls to cus-
tomers is an example of this. Having a treatment effect estimate for every running case
can help decision makers separate the cases that would benefit from the treatment from
those that would not be affected or would be negatively affected by it. Particularly, if
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the cost of the treatment is not far below from its benefit, it is important to carefully
select a policy to determine which cases to treat. Let us first define what we mean by
a policy. A policy is a function Π that maps a feature set Xi ∈ X describing a case
to a treatment decision, Π : X → {0,1}. There are many ways to select a policy. For
example, we can decide to implement the random policy, meaning that for every case,
we randomly decide whether to treat them or not. The random policy is not the best
way of deciding treatment assignment. One way to improve on that is to decide treat-
ment assignment based on prediction. For example, in the loan origination example,
we can use predictive monitoring to predict the cycle time of each case. If the predicted
cycle time is higher than a threshold, we treat that case by giving that customer a call.
In this paper, we propose to select the best policy for treatment based on causal effect
estimates. Accordingly, in this step, we propose a policy selection module that max-
imises the net benefit given the cost of the treatment and the treatment effect estimates.
Furthermore, our proposed policy selection approach provides a way to evaluate the
model that is used to estimate the treatment effects.

The first step in the policy selection module is to build a Qini curve. The Qini
curve in this step is similarly built as the one in the method selection phase. The only
difference here is that the curve is constructed using the real event log and we do not
have Y (1) and Y (0) for every case. So, in the final step of calculating the Qini score for
each percentage, we take the difference in the outcomes of the treatment and control
group in lieu of the potential outcomes. Also, because the number cases in the treatment
and control groups are usually different, the sum of the outcomes in the control group
are multiplied by a scale factor. So, the Qini scores are computed the following way
for cycle time reduction and outcome improvement respectively.

Qini(n) = RT=0
π(n) ×

NT=1
π(n)

NT=0
π(n)

−RT=1
π(n) .

Qini(n) = RT=1
π(n) −RT=0

π(n) ×
NT=1

π(n)

NT=0
π(n)

.

where NT=1
π(n) and NT=0

π(n) respectively denote the number of traces in the treated and
control groups in π(n). Note that we can evaluate the causal estimator’s performance
on the original event log by looking at its area under the Qini curve, similar to the
method selection phase.

In addition to evaluating our causal estimator, we use the Qini curve for policy
selection by incorporating the cost and the benefit multipliers to create net value curves.
Suppose v is the value of reducing the cycle time by one unit of time (or improving the
outcome of one case) and c is the cost of applying the treatment to one case. Then, the
net gain of applying the treatment to π(n) is defined as follows:

gain(n) = v×Qini(n)− c×NT=1
π(n) .

Similar to the Qini curve, the net value curve can be drawn by computing gain(n)
for different values of n. The user has the option to view the curve and select the per-
centage n based on organizational constraints. For example, suppose the organization
has a target of achieving a net benefit of x. In that case, the net value curve will provide
the minimum proportion of cases that need to be treated to achieve that goal. If there
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are no constraints, the percentage n that yields the highest net value can be selected
automatically.

In the last step of this phase, we select a threshold for triggering the treatment.
We do this by looking at the treatment effect of the last case in gain(n) for the n that
was selected previously (recall that the cases in Gain(n) are ordered according to their
treatment effects and the target). For example, the process owner of the loan origination
process has looked that the net-value curve and decided that treating the top 30% of
cases lead to the net-benefit required by the bank (n = 30). Suppose that the treatment
effect of the last case observed in gain(30) is 0.25 (θ = 0.25). Then the policy is defined
as the following: For every new case, if the estimated treatment effect is higher than
0.25 (θ ≥ 0.25) apply the treatment, otherwise, do not apply.

Similar to the estimation phase, the selected policy can be interpreted. This is
done by simplifying the causal model in the form of a tree. We build a policy tree in
the following way: First we select the policy that we would like to have explanations
for. For example, suppose the chosen policy is treating 30% of cases with the highest
treatment effect. We label the data in such a way that the cases which are in the top 30%
in terms of treatment effect receive the label "treat", and the rest of the cases receive
the label "do no treat". We then proceed to build a decision tree on top of this labelled
data. This tree tries to separate the subgroups with the label "treat", from the subgroups
with the label "do not treat". By traversing the tree, explanations for both "treat" and
"do not treat" can be shown.

5.4 Online Treatment
In the online phase, the applicability of the treatment for an ongoing case with an
observed k-prefix is assessed. If the treatment is not applicable at that point, the as-
sessment is repeated after the next event. If the treatment is applicable, the k-prefix of
the case is encoded as a feature vector using the same approach as in the offline phase.
Then, the treatment effect is estimated using the pre-trained causal model. If the esti-
mated net gain is sufficiently high according to the pre-selected treatment policy, the
prescriptive monitoring system recommends applying the treatment.

Let us come back to the example loan origination process discussed in Section 2.
First, we take a log of this process, clean it, encode the case-level and event-level
features, and create a treatment attribute, where the value of this attribute is zero for
cases that got an email and 1 for cases that got a phone call. We then divide this pre-
processed dataset into training and testing sets. We then create an artificial version of
the event log with both potential outcomes. We select the best causal estimators which
has a high area under the Qini curve, and is robust to the violation of the positivity and
ignorability conditions. We then use the training set of the real data to train the selected
estimator. This trained estimator can then take an incomplete case as input and returns,
as a number, the estimated effect of calling the customer. We then estimate the effect
of the phone call on all the cases in the test set. We use these estimates to create a
net-value curve. The policy maker uses the curve to decide the percentage of future
cases that will get the phone call based on organizational constraints.

In the online phase, a new application is created by the customer. After the execu-
tion of each activity, the applicability of the phone call at that stage is assessed. In the
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initial stages of document processing, there is no need for the phone call, so we move
on to the next activity. If we encounter missing documents in this case, we encode the
information about this case using the same method as in the offline phase and estimate
the treatment effect using our trained model. Suppose that the selected policy is to treat
half of the cases. If the estimated effect for this new case is above the observed CATE
in the top 50% of case, we call this customer; otherwise, we send an email.

6 Evaluation
We demonstrate our approach by conducting experiments on four real-life logs. The
underlying assumption for the usefulness of our approach is the heterogeneity of the
causal effect across different cases, meaning that each case with its unique set of con-
ditions has a different response to the proposed treatment. Hence the most basic check
that needs to be done before the prescriptive monitoring method is applied to a given
process is to check if the event log contains enough signal about the heterogeneity of
causal effects. If signal about heterogeneity is not present in the event log, then as-
signing a treatment based on the estimated causal effects will not provide more benefit
than assigning the treatment randomly. Moreover, we would like to find the best causal
estimator for each event log, since there is no single estimator that can outperform all
the other estimators for every data set.

As discussed in Section 4, in observational studies the violation of positivity and
ignorability assumptions are among the threats that can invalidate the study. Therefore,
we need to check how the chosen causal estimator behaves if these assumptions are
violated. These questions cannot be answered using the real-life event logs at our dis-
posal, because the ground truth causal effect is not available for such logs. Therefore
we answer these questions using our designed applicability test and method selection
phase, which use simulated data. To evaluate the performance of our checks, we apply
them to a fully simulated event log. In this log, we have full control of how the treat-
ment and outcome variables are generated. We simulate scenarios where the positivity
and ignorability conditions are severely violated to observe if our checks can capture
these conditions.

Once the above issues are addressed, the chosen estimator can be applied to a real-
life event log. The policy for applying treatment at run-time will be chosen based on the
estimated causal effects on the real data. In addition, we incorporate an explainability
module that provides explanations for both the causal estimator and the selected policy.

We translate the above issues to eight main research questions which we use to
guide our evaluation:

• RQ1: How realistic are the artificial logs we generate using Realcause?

• RQ2: Can the positivity and ignorability violations checks successfully capture
the violation of these assumption?

• RQ3: Do the selected datasets contain enough effect heterogeneity to benefit
from the prescriptive monitoring approach?

• RQ4: Which causal estimator performs best for each dataset?
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• RQ5: Which causal estimator is the least sensitive to the violation of the positiv-
ity assumption?

• RQ6: Which causal estimator is the least sensitive to the violation of the ignora-
bility assumption?

• RQ7: How do the selected causal estimators perform when used on the original
event logs?

• RQ8: How can the causal model and the policy be explained?

To answer these questions, we follow the pipeline in the proposed approach (see
Fig. 1). Therefore, we conduct four main experiments: "statistical test on enhanced
logs", which is designed to answer research question 1, "experiment on fully simulated
log", which is designed to answer research question 2, "experiment on enhanced logs",
which is designed to answer research questions 3-6, and "experiment on original logs",
which is designed to answer research questions 7-8. The experiment on the enhanced
log will follow the steps in the blue box in Fig. 1, and the experiment on the original
logs will follow the steps in the red box.

6.1 Datasets
The data we used are the event logs from the Business Process Intelligence Challenge
in 2016, 2017, 2019, and 2020, available from the 4TU Center for Research Data.1

We used these datasets because they contain interventions that could possibly have a
causal effect on the process outcome or the cycle time. Moreover, each log shows
unique features. For example, BPI17 is characterised by a combination of case-level
and event-level attributes, while most of the attributes in the BPI19 log are case-level.
In addition to the BPIC logs above, we use a fully simulated claims management event
log where we have full control of the treatment and outcome variables.
Claims Management: This log contains traces of a claims management process. This
log contains various case attributes, resource information, and dynamic event attributes.
We create an outcome variable called "satisfied" to indicate whether the customer was
satisfied with the process of their claim. As a treatment, we add an activity "Call the
customer" at various points in time between length two and six (for cases that are longer
than six). We then create two versions of this event log. In the first version, we place
the treatment in such a way that the treated cases are unrelated to the untreated ones
(violation of positivity). In the second version of the log, we generate the treatment and
outcome in such a way that both are highly influenced by resource attributes (strong
confounding).
BPI16: This is the log of a call center from a Dutch autonomous administrative au-
thority. The log contains information about the calls that were made by customers and
the questions that they asked. In this log, it can be seen that sometimes customers call
the call center multiple times to ask the same question. This can create extra work for
the employees and keep the line busy, resulting in extra waiting times for other cus-
tomers who are first time callers. One way to potentially alleviate this problem is to

1https://data.4tu.nl
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spend more time with the customer when they call the first time to ensure that they have
completely understood the answer to their question. So in this process, the treatment
is increasing the duration of the call to be higher than average. We consider a case to
have a negative outcome (Y = 0) if the customer calls again within a month after their
first call, and a positive outcome otherwise.
BPI17: This log contains traces of a loan application process of a Dutch financial
institute. The data contains attributes about the applications and the loan offers made
by the bank. This log shows a number of cases with multiple offers made to the same
customer. We observe that in such cases the rate of acceptance among customers is
higher than in those cases where only a single offer is sent to the customer. However,
sending multiple offers requires additional work for the resources. So in this process
we aim to find a data-driven policy for sending multiple offers only to the customers
which are highly likely to be responsive to it. Accordingly, the treatment is sending
multiple offers, and the outcome of interest is whether the customer accepts the final
offer.
BPI19: This log contains traces from a purchase-to-pay process of a Dutch multina-
tional company. Each case describes a purchase order item from its creation to pay-
ment. This log also records activities such as changes, cancellations, and message
exchanges related to purchase orders. In this log, we observe some activities that in-
dicate a change in the purchase order items. Since changes might lead to re-work, we
hypothesised that avoiding changes leads to lower cycle times. Specifically, we consid-
ered skipping of activity Change Price as our treatment for this experiment. However,
fixing the price of purchase orders all at the same time for each case without consid-
ering the specific context of each case leads to a rigid order placement procedure and
might require extra work at the beginning of the process. Thus, rather than fixing the
price at the beginning of every case, we propose a targeted approach. Specifically, we
provide a recommendation for each case indicating whether a price change should be
permitted or not. In this way, we can avoid the rework in cases where this change is
harmful and increases cycle time while preserving flexibility in other cases that are not
highly affected by price change.
BPI20: This log contains the data of a university travel reimbursement process at TU
Eindhoven. The process starts when a declaration is submitted by an employee and
ends when the payment is handled. In this process, the activity declaration APPROVED
by BUDGET OWNER is an extra check that could be skipped to reduce the cycle time.
We observe that when this activity is present in the trace, the cycle time is longer.
However, we do not know if the delay is caused by this activity or because managers
who have a budget owner are in general busier and that is the cause of the longer cycle
time in such cases. So, in this process the treatment is skipping the activity declaration
APPROVED by BUDGET OWNER and the target of interest is reducing the cycle time.

6.2 Statistical Tests on Enhanced Logs
In this experiment, we aim to answer RQ1. To evaluate how realistic the enhanced
logs are compared to their original counterpart, we run a series of statistical tests. They
test the hypothesis that two samples come from different distributions. We use both
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univariate and multivariate tests. We apply the univariate tests to the treatment and
outcome variables and the multivariate test to treatment and outcome with and without
the prefix attributes. For univariate testing, we use the Kolmogorov-Smirnov (KS) test
and the Epps-Singleton (ES) test. The ES test is more suitable for discrete distributions
(such as binary treatment or outcome). The multivariate tests we use are the Friedman-
Rafsky test, k-nearest neighbor (kNN) test, and energy test. We also run permutation
tests with Wasserstein-1 and Wasserstein-2 distance metrics. Table 1 shows the p-
values of these tests. The null hypothesis is that the enhanced data and the original
data come from the same distribution. Large p-values (e.g., p > 0.05) indicates that
there is no statistically significant evidence that the enhanced data and the original data
come from different distributions. All the p-values in Table 1 are above the commonly
used threshold of 0.05. The answer to RQ1 is that the enhanced logs are statistically
indistinguishable from the original event logs.

Test BPI16 BPI17 BPI19 BPI20 Claims V1 Claims V2
T KS 0.0941 0.7605 0.6762 0.1359 0.4477 0.9325
T ES 0.1919 0.6567 0.879 0.2492 0.3557 09523
Y KS 0.9999 1.0 0.079 0.1 0.6534 0.1234
Y ES 0.8024 0.9396 0.1156 0.071 0.2862 0.1749

(T,Y) Wass1 0.528 0.432 0.609 0.052 0.751 0.422
(T,Y) Wass2 0.525 0.346 0.747 0.044 0.496 0.654

(T,Y) FR 0.587 1.0 0.144 0.089 0.805 0.054
(T,Y) kNN 0.878 0.292 0.651 0.081 0.731 0.059

(T,Y) Energy 0.521 0.454 0.622 0.44 0.738 0.276
(X,T,Y) Wass1 0.733 0.089 0.394 0.668 0.684 0.364
(X,T,Y) Wass2 0.698 0.24 0.519 0.554 0.645 0.363

(X,T,Y) FR 0.38 0.598 0.065 0.499 0.841 0.865
(X,T,Y) kNN 0.377 0.797 0.099 0.474 0.857 0.901

(X,T,Y) Energy 0.703 0.169 0.393 0.787 0.584 0.439
|X| (n attributes) 25 178 482 26 93 93

Table 1: Table of p-values for the various statistical tests on all the logs used in our
experiments.

6.3 Experiment on Fully Simulated Logs
In this experiment, we aim to answer RQ2. We first created two versions of the claims
management log. Version1 has unrelated treatment and control groups (positivity vi-
olation) and version2 has resource information as confounding variables. We applied
Realcause to enhance both versions of the log with both potential outcomes. We then
applied the positivity violation check to version1, and the ignorability violation check
to version2 of the log. The treatment and outcome generation was done using the
CausalML library, which allowed us to purposefully violate positivity and ignorability.
We only report the Qini curves for X-Learner because we achieved almost identical
results with other causal estimators. Figure 2 shows the results:

The positivity check was applied to version1 of the log. In version1, we have
unrelated treatment and control groups, meaning that some cases have no chance of
being selected for treatment. In Figure 2a we can see a big drop in performance when
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(a) Positivity Check (b) Ignorability Check

Figure 2: Positivity and Ignorability violation checks for Claims Management

the overlap knob is set to zero. Recall that the overlap knob adjusts the distribution of
treatment assignment. The fact that the area under the Qini curve drops significantly
with overlap = 0 means that the generated causal effects of Realcause were realistic
enough to reflect the data generating distribution (in this case, unrelated treatment and
control groups).

We applied the ignorability check to version2 of the claims management log. In
this version, we generated the treatment and outcome columns with resource features
as confounding variables. We can observe in Figure 2b that when we train the causal
estimator without the resource features (resource features are hidden from the causal
estimator), performance drops to the level of random. This shows that our check suc-
cessfully identified the confounding present in the data and that the Realcause gener-
ation of true treatment effect reflects this. So the answer to RQ2 is that the positivity
and ignorability checks can successfully detect these violations.

6.4 Experiment on Enhanced Logs
In this experiment, we aim to answer RQ1–4 and to choose the best causal estimator
for each log. We trained a generative model of Realcause to create artificial versions
of our four logs which are statistically indistinguishable from the real ones. To answer
RQ1 and RQ2, we measured the estimated causal effects using various causal estima-
tion methods and reported the findings for three methods which performed well on
these logs. We then proceeded to the positivity violation check to answer RQ3 and the
ignorability violation check to answer RQ4. If the results from the artificial logs were
satisfactory, we went on to apply the selected estimation method on the original logs.

6.4.1 Evaluation measures:

In this experiment, we have access to both potential outcomes, therefore, we can di-
rectly measure the benefit of applying the treatment without using the treatment and
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control group as a proxy. We use the area under the Qini curve to compare the different
estimators.

6.4.2 Training settings

Generative model for creating the enhanced log. For training the generative
sigmoidal flow model, we use a 50%–10%–40% split for training, validation, and
testing, respectively. We also standardise the data to have zero mean and unit variance
to get maximum performance. We use the default optimization and model selection
procedure in Realcause, that is, we use an Adam optimiser to maximise the likelihood
on the training set, perform hyperparameter tuning using grid search, and select the
model with the best validation likelihood and a p-value passing 0.05 on the validation
set.

Causal estimator on the enhanced logs. To train the causal estimators on the en-
hanced logs, we sample from the generative model, which results in an event log with
the same number of cases as the original log. We sample a separate test set to evaluate
the model. Each simulation is run 100 times, and the results of the simulations for each
estimator are averaged. For the positivity violation check, we use the Overlap knob in
Realcause with 0,0.5,1 for the β value. For the ignorability violation check we train
the causal estimation multiple times, each time by excluding a set of features, namely:
i) case features, ii) resource features, and iii) time features.

(a) BPI 2019 (b) BPI 2020

Figure 3: Qini curves for cycle time datasets.

6.4.3 Results

It is clear from Qini curves for BPI16 and BPI20 that applying a causal estimation
method on these two logs results in very minimal improvement over treating the cases
randomly (see Figures 3 & 4). This is because in these two datasets, there is not enough
signal for capturing the heterogeneity of treatment effects. Therefore, defining a policy
based on ordering cases by their estimated CATE does not lead to any benefit. Also, we
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(a) BPI 2016 (b) BPI 2017

Figure 4: Qini curves for outcome datasets.

observe that these treatments do not lead to much benefit even if all the cases receive
the treatment. This is because in general, the causal effect of the chosen treatments
are not very high. Recall that in the BPIC20 event log one reason for a long cycle
time when the event Declaration APPROVED by BUDGET OWNER is present is that
a supervisor with a separate budget owner may in general be busier than a supervisor
without one. So, skipping the activity involving the budget owner may not be a helpful
treatment, and hence, we observe a low area under the Qini curve. Based on these
results, we stop the analysis for these two event logs here.

For the BPI17 and BPI19 logs, we can see a significant improvement over the ran-
dom treatment policy, suggesting that these logs contain information about the hetero-
geneity of the CATE among the cases. So, we are able to estimate an individual CATE
score for each case, and doing so will lead to some benefit. But, these conclusions are
made under the positivity and ignorability assumptions. In observational studies such
as the study of event logs, these two assumptions are often violated. In the next step,
we look at how these models behave under positivity violation.

In summary, the answer to RQ1 is that BPI17 and BPI19 have enough signal about
effect heterogeneity to benefit from our prescriptive monitoring approach, but BPI16
and BPI20 do not. The answer to RQ2 is that the S-Learner, X-Learner and Causal
Forest are all high performing causal estimators for the BPI17 and BPI19 logs. The
two meta-learners slightly outperform Causal forest, and in BPIC19, the X-Learner
outperforms the S-Learner.

Positivity violation check: Here, we train each selected causal estimator with a
different degree of overlap. Figures 5 and 6 show the Qini curves for S-Learner,
X-Learner, and Causal Forest with overlap values 0, 0.5 and 1. It can be seen that these
models are highly robust to positivity violation as the decrease in the area under the
Qini curve is minimal for all three estimators. In fact, for the BPI19 event log, there is
no change in the Qini score for the top 10% of cases, meaning that we are still able
to identify the cases benefiting most from the treatment, even if treatment assignment
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is deterministic. So, the answer to RQ3 is that all three estimators are robust to the
violation of the positivity assumption.

(a) BPI 2017 SLearner (b) BPI 2017 XLearner

(c) BPI 2017 Causal Forest

Figure 5: Qini curves for outcome dataset.

Ignorability violation check: This is the last step of this experiment to answer RQ4.
Here, we re-train the estimators each time with one set of features removed. The results
of this experiment can be found in Figures 7 and 8. For BPI17, the case attributes are
the strongest confounders because the area under the Qini curve reduces a lot more than
other features when it is removed. Also, comparing the three chosen estimators, for this
dataset, Causal Forest seems to be most sensitive to confounding. This is apparent from
the amount of reduction in the area under the curve. For this event log, the S-Learner
is the most robust to confounding, and since its area under the Qini curve is similar
to the other two estimators, it is the chosen method to be applied to the real-life BPI
challenge event log.

In the BPI19 dataset, Causal Forest seems to be the most sensitive again. But,
this time it is the time features which are the strongest confounders, which is expected
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(a) BPI 2019 SLearner (b) BPI 2019 XLearner

(c) BPI 2019 Causal Forest

Figure 6: Qini curves for cycle time dataset.

because the target variable in this event log is the case cycle time. Both S-Learner and
X-Learner perform very well even under strong confounding. The S-Learner struggles
on the lower percentages, but recovers at around 60%. The X-Learner’s curve under
strong confounding is consistent with the curve under no confounding, which leads us
to believe that that X-Learner is a more stable estimator for this dataset, and is chosen
for the next phase of the approach. In summary, the answer to RQ4 is that the S-
Learner is the most robust to the violation of ignorability for BPI17 and the X-Learner
for BPI19.

6.5 Experiment on Original Logs
While the purpose of the previous experiment was to select the best causal estimator
for each dataset, in this experiment we assess the performance of the selected estimator
on the original logs. We will also discuss the benefit of different treatment policies.
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(a) BPI 2017 SLearner (b) BPI 2017 XLearner

(c) BPI 2017 Causal Forest

Figure 7: Qini curves for outcome dataset.

6.5.1 Evaluation measures

Unlike the enhanced logs, the original logs do not have both potential outcomes. So,
the last stage of computing the Qini score will be the difference in target values in
the control and treatment groups. The underpinning intuition is that if the CATE is
estimated accurately, the cases with a positive outcome in the treated group would
have a higher estimated CATE than those in the same group with negative outcomes.
Also, cases in the control group with a negative outcome should have a higher CATE
than the positive outcome cases in the same group. Thus, a desirable causal model has
a Qini curve above the random curve. Similar to the previous experiment, we will use
the area under the Qini curve as the main performance metric.

6.5.2 Training setting

Here, we split the data into 60%–20%–20% for training, validation, and testing, re-
spectively, by preserving the temporal order between cases. We used the training set to
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(a) BPI 2019 SLearner (b) BPI 2019 XLearner

(c) BPI 2019 Causal Forest

Figure 8: Qini curves for cycle time dataset.

train the causal model, the validation set to tune the hyperparameters, and the test set
to provide an unbiased evaluation of the model. We standardise the data similar to the
artificial log generation step.

6.5.3 Results

Here we answer RQ5. The plots in Figure 9 show the Qini curves of the models con-
structed in our experiments. The black dashed line shows the expected improvement
if a random policy was used to treat a certain percentage of the cases. The blue line
shows the improvement if the policy was based on the selected causal estimator, the
green line if the policy was determined by the reinforcement learning method proposed
in [18] and the red line if the policy was determined by a random forest predictor. It can
be seen that in both datasets, the expected improvement is higher if the CATE-based
policy is followed rather than policies based on non-causal predictive models. Notably,
the curves for the predictive model are close to the random policy line indicating that
while predictive models are good at identifying which cases will be problematic in the
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future, they are not necessarily good at identifying which cases should be targeted with
the chosen treatments. The reason that the reinforcement learning method does not
perform well in this task is that while RL is well suited to determine treatment policies,
the method proposed by [18] relies on a predictive model and is designed to find cases
that need a treatment, not the cases that need the specific treatments we have chosen.
An interesting line for further investigation is to combine reinforcement learning (e.g.,
the method proposed by [18]) with causal estimation to get treatment policies for spe-
cific treatments. Both the S-Learner for BPI17 and the X-Learner for BPI19 have Qini
curves well above random. In BPI17, the curve shows that treating 80% of cases will
have more benefit than treating every case. For BPI19, the X-Learner is very good at
identifying top cases. According to the Qini curve, treating only 40% of cases will lead
to more than half the benefit of applying the treatment to everybody. Also, treating
90% of cases has more benefit than treating every case. Note that this curve is not
monotonically increasing as usual cumulative gain charts because the quantity on the
y-axis is the difference between treated and non-treated cases, which in some segments
can be negative since the treatment hurts the outcome in these cases.

(a) BPI 2017 (b) BPI 2019

Figure 9: Qini curves for original logs.

The Qini curves are without cost and benefit multipliers. So, we proceeded to plot
the net value curves for both models with varying values of v/c, where v is the value of
improving the target variable (reducing the cycle time by one day or getting a positive
outcome for one case), and c is the cost of applying the treatment to one case. Rather
than the absolute values of v and c, it is the ratio v/c that affects the shape of the curve.
Fig. 10 shows the net value curves with different values of v/c for the two logs. We
observe that as the ratio v/c decreases — i.e. the treatment becomes more expensive
relative to the benefit it provides — the net value of treating the cases decreases, and
so, it becomes more important to apply the treatment with a more targeted approach.
Fig. 10 shows the net-values for three values of v/c. For the curve in blue, v/c is
chosen in such a way that it produces the same shape as the Qini curve without the cost
and benefit multipliers, and for the green curve, v/c is chosen in such a way that the
net-value of applying the treatment to all cases is zero. The orange curve describes a
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situation between these two extremes. The way we choose v/c is that we suppose v = 1
and we change the value c to produce curves with different v/c. For BPI17, the value
of applying the treatment should be 100 times more than the cost of treatment for it to
produce the same net-value as the Qini curve suggests, while in BPI19, this is the case
if the value is only equal to the cost. Also, for the treatment to provide no net-value
when applied to all cases, the ratio v/c needs to be 14.3 in BPI17 and 0.02 in BPI19.
This leads us to believe that the chosen treatment in BPI19 is a more value-adding
treatment than the one chosen for BPI17.

(a) BPI 2017 (b) BPI 2019

Figure 10: Net value curves

Explainability: Many heterogeneous treatment effect estimation models, such as the
ones used in this evaluation (i.e., S-Learner and X-Learner) are black-box models. Yet,
these black-box models can be explained similar to predictive models via the SHAP
method [17]. We use the EconML implementation of SHAP. These SHAP values ex-
plain why the model produces a large or small CATE for a particular subgroup. We
plot the feature importance for the causal models that we trained in this experiment
to provide insight as to why our model behaves the way it does. Figure 11 shows the
most important features for each dataset. For BPI17, the customer’s credit score is an
important feature. In particular, the treatment seems to have a negative effect on cus-
tomers with very high or very low credit scores, while cases with average credit score
benefit from the treatment. The application type is another important feature, with new
credit applications benefiting from the treatment in contrast to limit raise applications.
In the BPI19 dataset, the most important feature is the presence of the activity Create
Purchase Order Item. This explanation is expected, because many cases in the event
log are purchase requisition items that do not lead to a purchase order. Since our treat-
ment is about allowing price changes, it is expected that we do not recommend this
treatment if no purchase order is created first. Another important feature is the number
of open cases. When the number of open cases is large, the treatment is recommended.
This explanation is intuitive. If there are a large number of active cases, allowing price
changes adds to the workload of the resources leading to delays in cycle time.

Let us now compare these explanations with the most important features used by
the random forest predictors. Figure 12 shows the most important features for the
predictive model. For BPI17, Credit Score is the most important feature, similar to the
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causal model. But, the way this feature influences the model is very different. For the
predictive model, high credit score leads to a high outcome, but for the causal model,
high credit score does not lead to a high treatment effect. Instead, the customers with
average credit scores get a high treatment effect, but the average credit score is not
indicative of a successful outcome. Other differences between the causal model and
the predictive model include the features which are most important. For the causal
model, application type is an important feature. But this feature does not appear in the
most important features of the predictive model. Instead, the predicitve model relies on
the presence of certain activities. Also, not surprisingly, the offered amount is a high
predictor of case success, with high offered amounts being predictors of a successful
case. But this attribute is not among the most important features of the causal model.

For the BPI19 dataset, we also observe some features that are important both for
the causal model and the predictive model. For example, time since first case is a
highly predictive feature for cycle time prediction. We can see that low values of this
attribute indicates a high cycle time. This means that earlier cases in the event log take
longer. We also observe that this feature indicates the effectiveness of the treatment.
An important difference between the causal model and the predictive model is the
importance the case attributes in each model. For the predictive model, the cumulative
net worth is an important feature. More expensive purchase items have a longer cycle
time. But this features is not important in causal estimation of the chosen treatment.
Instead, the case attributes related to the type of purchase order, e.g., Spend area test
determine are important indicators of causal effects.

We also provide explanations for the treatment policy. The policy we select is the
one that provides the highest net-value in the green coloured curve in Fig. 10. We
chose this curve as it is a scenario describing a situation when the treatment cost is
high relative to the value it provides. For the BPI17 event log the chosen policy is
treating 40% of cases with the highest estimated causal effect and for BPI19, the chosen
cases are in the top 20%. Figure 13 shows a fragment of the policy tree for BPI17.
We only show a fragment of the policy tree for readability purposes.2 The orange
nodes contain the cases that should not receive the treatment, while the blue nodes
contain cases recommended for treatment. Each node contains the splitting criterion,
the number of samples in that node, the number of samples for each label (treat or not
treat), and the dominant class label. We can see that a number of features which are
important according to the SHAP methodology, such as "Credit Score", "Application
Type New Credit", and "Loan Goal Remaining Debt Home", also appear in the policy
tree, reinforcing their importance.

Figure 14 shows a fragment of the policy tree for BPI19. In this tree, we can also
see some common features with the SHAP plot of Fig. 11b. For instance, features such
as "time since first case", "Activity Create Purchase Order Item", and "Open Cases"
appear in both SHAP plot and policy tree.

2The full tree can be found in the GitHub repository mentioned in the reproducability section of this
paper.
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(a) BPI 2017

(b) BPI 2019

Figure 11: Feature importance using SHAP for S and X Learners

6.6 Threats to Validity
The evaluation comes with a threat to external validity (lack of generalizability) as it
relies on only four event logs. This can be addressed by conducting further experiments
with logs of different characteristics and from different domains. Since we used four
real-life event logs in our evaluation, a threat to internal validity is posed by potential
data quality issues. To mitigate this threat, we performed data cleaning steps on all
four logs. A threat to construct validity is coming from the fact that we use simulations
to enhance the event logs with alternative outcomes. For these simulations, we use
established methods from the fields of causal inference and machine learning, but it is
possible that the assumptions upon which these methods rely are not fulfilled in some
real-life situations. Specifically, using the ignorability violation check, we attempt to
ensure that the chosen method is robust to unobserved confounding. However, if the
actual unobserved confounders are stronger than the confounders present in the data,
this check is not sufficient to analyze the behaviour of the estimator under stronger
confounding. So, a rigorous A/B test, where the randomization of the treatment as-
signment is guaranteed, should be conducted before deploying the recommendations
of our method in an operational setting. Finally, due to the sharing of resources between
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(a) BPI 2017

(b) BPI 2019

Figure 12: Feature importance using SHAP for Random Forest Predictors

process cases, we expect that the no-interference assumption to be violated. However,
the impact of the violation of no-interference is dependent on the specific process. So
a domain expert needs to assess the severity of this violation before our method is
applied.

7 Conclusion and Future Work
We proposed a prescriptive monitoring method that recommends whether or not to
apply an intervention (treatment) to an ongoing case, to improve a given process per-
formance metric. The method uses causal inference methods on historical traces, to
estimate the causal effect (the treatment effect) given the current state of a case. Based
on this estimate, the method calculates the expected gain of the treatment given a cost
function and generates recommendations based on a user-defined policy. The method
incorporates steps for checking the applicability of the supported causal effect estima-
tion methods on the input data, and for selecting a causal estimation method specifically
for a given dataset.

We demonstrated the applicability of the proposed method on four real-life logs.
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(a) BPI 2017

Figure 13: Excerpt from policy tree for treating the top 30% of cases for BPIC17
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(a) BPI 2019

Figure 14: Excerpt from policy tree for treating the top 20% of cases for BPIC19
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We showed that the method is able to evaluate causal models in terms of robustness
to confounding effects and the violation of the positivity assumption. We also showed
that the proposed approach is able to identify policies that yield higher net-gain than
treatment policies based on non-causal predictive approaches, as previously proposed
in the literature.

The proposed approach tells us whether a given case should be treated or not, but
it does not deal with the question of what is the optimal time to trigger an intervention
during the lifetime of a case. An avenue for future work is to optimize the time of the
treatment (i.e. “when to treat?”) based on historical data.

The approach assumes that there is a single type of treatment and that this treatment
is binary (i.e. it is either applied to a case or not). Another direction for future work
is extending this method to accommodate multiple treatment types (choosing between
one type of treatment or another) as well as treatments with continuous values (e.g.
offering a discount of X% to a customer where X is a number).

Another limitation of the proposed approach is our assumption that there is no
unobserved confounding. We address this limitation by performing an ignorability
violation check. However, this check only shows the behaviour of the causal estimator
for known confounders. If there are unknown confounders with higher strength than the
known ones, or if their strength is unknown, other methods for addressing unobserved
confounding (e.g., instrumental variable methods, front door adjustment, etc.) need to
be employed. We leave that for future work.

We use SHAP and policy tree methods to explain the causal model and the selected
policy. Another interesting area of further exploration is using other explainability
methods, particularly the ones providing a comprehensive framework for business pro-
cesses e.g., [39, 7]

Finally, the approach requires the treatment type to be given as input by the user.
Another direction for future work is to design methods to automatically discover can-
didate treatments from a historical event log.
Reproducibility The source code of our tool, the datasets used in our evaluation and
all the results from the experiments can be found at https://github.com/zahradbozorgi/
CausalPrescriptiveMonitoring.
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